×

[PR]この広告は3ヶ月以上更新がないため表示されています。
ホームページを更新後24時間以内に表示されなくなります。

■分数関数の不定積分
◇解説◇

  ○ 基本公式
  • log|x|の微分はだから,

    dx = log|x| + C
  • log|ax + b|を微分すると となって,a が掛けられるから,逆に積分するときは,あらかじめ a で割っておきます.

    dx = + C
  • 分母が1次式に因数分解できるときは,部分分数に分けて個々に積分計算を行います.

    例: dx

    = ( - )dx

    = log|x - 2| - log|x - 1| + C

    = log| | + C

※ 分母の2次式が実係数で因数分解できないものの「不定積分」は高校の範囲外です.


dx は置換積分でできますが,変数が戻せないので

範囲外ですが,

dx は 置換積分で値になるので範囲内です.
◇準備体操◇ 次の空欄を埋めなさい.
(1)  = ( - )

だから

 dx = ( - )dx

(2)   = +
となる定数 a, b を求めると,
恒等式 a(3x + 1) + b(2x + 1) = 1 の両辺の係数を比較して
3a + 2b = 0, a + b = 1 より,
a = b = となるから
dx = ( + )dx


(3) [積分計算以前の前提]

(分子の次数)≧(分母の次数)のときは,割り算によって商と余りに分け,(分子の次数)<(分母の次数)に変形してから積分計算を行います。すなわち
A÷B = Q・・・R ならば
A = BQ + R
= Q +

を用いて,分子の次数を下げます.このような操作で残った分数関数について左の公式で積分を行うということです.

dx = ( + )dx

■ 問題 次の空欄を埋めなさい。(なお,空欄にはスペースを使わずに半角の「アルファベット小文字または数字」だけを使用するものとします.)
問題 答案
(1)  dx
1 2


= + log|| + C・・・答
(2)  dx
1 2
= - + log|| + C・・・答
(3) 
1 2

= log| | + C ・・・答
(4) 
1 2



= log| | + C ・・・答
(5)  dx
1 2


= - - log|x + 1| + log|x + 2| + C ・・・答
(6)  dx
1 2



= + log| | + C・・・答



○==メニューに戻る

◇教材開発ノート◇・・・このページでは,各10行程度
の関数を用いて,Web上の数式を表現しています。